ASIA Hybrid Platform

All SiC Module for Traction Inverters with 1st Generation Trench Gate SiC MOSFETs

Chen Song, Fuji electric China Co., Ltd

Chen Song

- 2. Future of Package for Traction
- 3. 3.3kV 1st gen trench gate MOSFETs technologies

Outline

- 4. Electrical performance for SiC MOSFETs
- 4-1 Static characteristics
- 4-2 Improvement of leakage current
- 4-3 Dynamic characteristics
- 4-4 PWM simulation results
- 4-5 Calculation results for relationship between Tvj and Io
- 5. Line up plan
- 6. Conclusion: Down sizing

Power semiconductor Module's Market Demands

✓ High current density
✓ Low dissipation

FO Fuji Electric

1. Introduction

- 2. Future of Package for Traction
- 3. 3.3kV 1st gen trench gate MOSFETs technologies

Outline

- 4. Electrical performance for SiC MOSFETs
- 4-1 Static characteristics
- 4-2 Improvement of leakage current
- 4-3 Dynamic characteristics
- 4-4 PWM simulation results
- 4-5 Calculation results for relationship between Tvj and Io
- 5. Line up plan
- 6. Conclusion: Down sizing

2. Feature of Package for Traction

HPnC : New PKG

HPM : Conventional PKG

- > Low inductance:10nH
- \succ High isolation capability up to 3.3kV
- Traction standard: EN50124-1 and EN45545-2

Outline

1. Introduction

- 2. Future of Package for Traction
- 3. 3.3kV 1st gen trench gate MOSFETs technologies
- 4. Electrical performance for SiC MOSFETs
- 4-1 Static characteristics
- 4-2 Improvement of leakage current
- 4-3 Dynamic characteristics
- 4-4 PWM simulation results
- 4-5 Calculation results for relationship between Tvj and Io
- 5. Line up plan
- 6. Conclusion: Down sizing

Cross-Section Structure of MOSFETs Planar SiC MOSFET

1G Trench SiC MOSFET

Source

n⁺

P base

Cell pitch of 1G trench Gate was reduced by 50% and RonA could be reduced 40% compared to planar Gate.

- 1. Introduction
- 2, Future of Package for Traction
- 3. 3.3kV 1st gen trench gate MOSFETs technologies

4. Electrical performance for SiC MOSFETs

- 4-1 Static characteristics
- 4-2 Improvement of leakage current
- 4-3 Dynamic characteristics
- 4-4 PWM simulation results
- 4-5 Calculation results for relationship between Tvj and Io
- 5. Line up plan
- 6. Conclusion: Down sizing

Si 7th Gen./SiC1st Gen. trench/SiC planar. output characteristic at 150deg.C

All-SiC trench 1G gate is lower than Vce of Si 7th Gen under half rated current, which is used under general continuous operation condition

4-2. Improvement of leakage current

- •Leakage current of Si IGBT was approximately 3 times larger than SiC MOSFET at 150deg.C and enable to operate under higher temperature.
- •Maximum temperature is limited to 175deg.C due to Package reliability.

4-3. Dynamic characteristics Turn off

 V_{cc} =1800V, I_D =same current density(A/rating), R_q =2.7 Ω for Si 7th Gen , R_q =10 Ω for All SiC

The tail current of all-SiC module was reduced and the rising voltage was also faster compared to 7th generation Si IGBT module. → Eoff was reduced by 68%.

4-3. Dynamic characteristics Turn on

 V_{cc} =1800V, I_D =same current density(A/rating), R_a =0.68 Ω for Si 7th Gen , R_a =20 Ω for All SiC

The peak current at turn on of the all-SiC module was reduced compared to 7th generation Si IGBT module.

 \rightarrow Eon was reduced by 47%.

4-3. Dynamic characteristics Recovery

 V_{cc} =1800V, I_D =same current density(A/rating), R_a =0.68 Ω for Si 7th Gen , R_a =20 Ω for All SiC

The tail current of all-SiC module was reduced compared to the 7th generation Si IGBT module. \rightarrow Err was reduced by 98%.

4-4. PWM simulation results

Calculate condition :Vcc=1500V,Io=510Arms,cos φ =0.85, λ =1.0,Fc=1kHz, Tvj=150deg.C Sample rating :450A/3300V(Si maximum rating), 750A/3300V(All SiC maximum rating)

The overall power dissipation for All SiC module with trench gate with 2 modules in parallel was reduced 42% compared to Si 7th Gen.

4-5.Calculation results for relationship between Tvj and Io

All SiC module with Trench gate MOSFET realized to expand the Io by 66% with same package size during overload operation.

- 2. Future of Package for Traction
- 3. 3.3kV 1st gen trench gate MOSFETs technologies

4. Electrical performance for SiC MOSFETs

- 4-1 Static characteristics
- 4-2 Improvement of leakage current
- 4-3 Dynamic characteristics
- 4-4 PWM simulation results
- 4-5 Calculation results for relationship between Tvj and Io
- 5. Line up plan
- 6. Conclusion: Down sizing

5. Lineup plan

Package		Small 1B	Small 2B	62mm STD	HPnC
size(WxDxH)		62.8x33.8x12 mm	56.7x62.8x12 mm	62x108x30.5 mm	100x140x38 mm
Rated voltage	Equivalent Circuit			0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
1200V	2in1	~100A	~200A	~600A	-
	6in1	~50A	~100A	-	-
1700V	2in1	-	-	~400A	TBD
3300V	2in1	-	-	-	750A
Application		Auxially equipment			Propulsion

The product lineup will realize coverage of the wide range for traction.

• <u>High temperature operation</u>

 \rightarrow Operation temperature was expanded to 175deg.C

Low Power Dissipaption

 \rightarrow Dissipation loss was decreased by 42%

Down sizing (High Power Density)
→Output current was expanded by 66%
→Maximum rated current was expanded from 450A to 750A

All-SiC module will contribute greatly to the high efficiency and miniaturize power conversion systems in the future.

Thank you very much!!

